翻訳と辞書 |
Discrete-time stochastic process : ウィキペディア英語版 | Discrete-time stochastic process In probability theory and statistics, a discrete-time stochastic process is a stochastic process for which the index variable takes a discrete set of values, as contrasted with a continuous-time process for which the index variable takes values in a continuous range. An alternative terminology uses discrete parameter as being more inclusive.〔Parzen, E. (1962) ''Stochastic Processes'', Holden-Day. ISBN 0-8162-6664-6 (page 7)〕 A more restricted class of processes are those with discrete time and discrete state space. The apparently simpler terms "discrete process" or "discontinuous process" may cause confusion with processes having continuous time and discrete state space.〔Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', OUP. ISBN 0-19-920613-9 (Entry for "continuous process")〕 Given the possible confusion, caution is needed.〔 ==Examples==
Examples of discrete-time stochastic processes are random walks and branching processes, for which the state space may be either continuous or discrete. Important examples of discrete time and continuous state space processes are models conventionally used in time series analysis: for example, the ARIMA and ARCH models.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Discrete-time stochastic process」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|